#1. Show the binary representation of \(-435\) in the following representation schemes (assume 16-bit words):

a) sign magnitude

b) one’s-complement

c) two’s complement

#2. Convert \(316\) into (assume 16-bit words):

a) binary

b) octal

c) hexadecimal

#3. Fill in the Condition Code bits for the following addition instructions (8-bit two’s-complement numbers):

\[
\begin{array}{c}
01110110 \\
+ 01001010 \\
\hline
\end{array}
\quad \begin{array}{c}
11101011 \\
+ 10010101 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
N & Z & V & C \\
\hline
| & | & | | \\
\end{array}
\quad \begin{array}{c|c|c|c|c}
N & Z & V & C \\
\hline
| & | & | | \\
\end{array}
\]

(over)
#4. Powers of 2

128K = 2——

\[2^{35} = \text{______} \quad \text{(in terms of K, M, G, etc.)}\]

#5. In a Little-Endian architecture, show how the bytes are laid out in memory for the following statement (write the hexadecimal values of the bytes in the appropriate memory locations):

\[
\text{long shot} = 0xDEADC0DE;
\]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the hex value of the most significant byte? ________