#1. Show the representation of \(-136_{10} \) in the following representation schemes (assume 12-bit words):

a) sign magnitude

b) one’s-complement

c) two’s complement

#2. Convert \(129_{10} \) into (assume 12-bit words):

a) binary

b) octal

c) hexadecimal

#3. Fill in the CCR bits for the following addition instructions (8-bit two’s-complement numbers):

\[
\begin{array}{c}
10110001 \\
+ 11011110 \\
\hline \\
\end{array}
\quad
\begin{array}{c}
01010110 \\
+ 01100001 \\
\hline \\
\end{array}
\]

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>